TEMPERATURE FIELD IN A HOLLOW FINITE-LENGTH
CYLINDER WITH AN ARBITRARILY MOVING
HEAT SOURCE

L. A, Brichkin, Yu. V. Darinskii, UDC 536.21
and L, M. Pustyl'nikov

An analytical solution is obtained to the problem of heating a hollow cylinder from an arbi-
trary heat source. The asymptotic of the characteristic equation is derived and the eigen-
values of the corresponding Sturm—Liouville equation are tabulated.

We consider the problem of a temperature field 9(p, ¢, n, Fo) in a hollow finite-length subjected o a
heat source which moves in an arbitrary mode, The heat transfer at both the inside and the outside sur-
face of this cylinder proceeds according to Newton's law, while the end surfaces are thermally insulated.

The problem reduces to integrating the heat transfer equation ‘
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System (1)-(6) appears in dimensionless form. The introduction of an internal heat source (Po)fy(p,
@, 1, Fo) generalizes the problem.

The choice of functions fp(¢, n, Fo) and f,(p, ¢, 7, Fo) is dictated by the trajectory, the velocity, and
by the space-time distribution of the source of thermal flux density.

Using the method of finite integral transformations [1, 2] and the Duhamel theorem [3], we obtain the
solution:
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where

0, (p, Fo) = + 7By ¥ AV (p) exp(— 1 Fo). @)
n

It can be shown that 8,G(p, ¢, £,7, £, Fo)isa Greenfunction of the second kind [4] for problem (1)-(6) with
Po = 0, the explicit expression for which is
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with # (%, t) denoting the Jacobi theta function [3] and
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An analysis of (7) will readily show that, if
I, (0, @ M, Fo)=38[p—(1+ Ap)] J, (@ n, Fo),

i.e., if the internal heat source is located directly at the inside surface of the cylinder (which corresponds
to a delta-type distribution of thermal flux densify along coordinate p at point 1 + Apg), then the effect of
each element acting independently is almost concurrent when Po = Ki,

Summation over y in (9) is carried out over all positive roots of the equation
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where (12) isthe kernel of a Hankel transform.
The roots of Eq. (11) are listed in Table 1 for various values of p;, m, and Bi; = (1/py)Bi;.

With the aid of respective asymptotic formulas [5]
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which are valid for {uf>1 and Iu| >>m, we obtain the following asymptotic representation:
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TABLE 1, Values of the Roots of Eq. (11)

Biy
D S T S O W
pp=11 m=0
™ 3,149 4,435 6,221 l 7,557 9,602 11,531 [ 13,066
o 31,741 32,050 32,649 33,227 34,318 I 35,579 36,738 |
po=1,1; m=1
e 3,342 4,536 6,294 7,618 9,648 11,569 I 13,090
[T 31,755 I 32,064 32,663 33,240 34,331 I 35,592 36,751

Po=1,04 m=0

Uy 4,992 7,047 9,934 12,126 15,552 l 18,893 21,640
Uo 78,750 l 79,250 80,000 80,054 81,507 84,006 | 84,501

pe=1,04 m=1
w, | 5,086 | 7,115 | 9,982 | 12,166 | 15,582 | 18,920 | 21,662
po=1,02; m=0

i 7,064 9,983 14,095 17,235 22,175
u, | 167,5 ; 157,7 158,5 159,0 160,0

0a=1,02; m=1
W | 7,133 | 10,030 | 14,130 | 17,263 | 22,197 [ 27,065 | 31,120

27,050 31,107
161,5 163,0

we have the following asymptotic approximation to Eq. (16):
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Solution (7) is quite general and provides a tool for analyzing a large class of various heat sources.
In order to arrive at solutions which will be of practical value, however, it becomes necessary to perform
a triple integration. This difficulty can be overcome in some cases when the thermal flux density is dis-
tributed according to certain laws.

In [6, 7] the thermal flux density was defined by a Gaussian distribution. Accordingly, letting
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with Po = 0 and replacing (7) by its equivalent
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we can evaluate the triple integral in solution (22) as follows:
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The following formulas have been used here:
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and the asymptotic expansion for |z|>»1, —(3/4)7 + ¢ < arg z < (3/4)r—e (e > 0):
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where &(z) = (2/7) j exp(—xz)dx is the probability integral.
P

In this way, the temperature field due to a heat source of the form (21) is described, w1th1n an
accuracy down fo o(g), by the expression
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Considering that the temperature distribution produced by a heat source of the form
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can be expressed as
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we now examine the difference between solutions (27) and (29):
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X cos q(PeD T) {l— exp [_ _;_. (m2 + qZ) Uz:l} .
X exp {[pL2 + (km)? ¢7) 7 dt. (30)
Since the calculations will be sufficiently accurate at some m =m; and q = q,, we have
: 1
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where the expression for M, can be easily derived from (30).
Thus, the difference will not exceed a prescribed small magnitude M(p, ¢, n, Fo), if the inequality
2 1

2
TS TR i —_M 62)
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holds true.

Condition (32) defines the dispersion range within which the temperature field to a Gaussian heat
source will be approximated with a given error corresponding to the respective Green function.

The results given in {9-12] may be viewed as special cases of solution (7).

NOTATION
6,07 is the dimensionless temperature and space coordinates;
Bi;, Bi, is the Biot number;
Fo - is the Fourier number;
Ki is the Kirpichev number;
Po is the Pomerantsev number;
oy oy is the coefficients of internal and external heat transfer respectively;
Ry, Ry is the inside and outside radii of a hollow cylinder respectively;
A is the thermal conductivity;
a is the thermal diffusivity;
Tao: Ty is the ambient temperatures;
k is the cylinder radius-~fo-length ratio;
Pe,, is the dimensionless angular velocity;
Pey is the dimensionless velocity along the n-axis;

Imwp): Ym(up) is the Bessel functions;
8 (@ =gy s 6@—no) is the delta function.
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